1:2

SECTION 1 cervical cancer and screening

COLORIDATION DISTRICTION CONTRACT CONTRACTOR

CONTRACTOR OF STREET

COMPANY,

CONTRACTOR OF THE OWNER.

COMPARED DO

ange and the second

COMPANY (COMPANY)

PRODUCT:

in the second se

cervical cancer and screening

SECTION 1 cervical cancer and screening

1.1	Epidemiology	3
1.2	Natural History	3
1.3	Risk Factors	4
1.4	The Role Of Human Papilloma Virus	5
1.5	Prevention Of Cervical Cancer – The Case For Screening	5
1.6	Rationale For Screening Intervals	7
1.7	Understanding Terms Commonly Used In Screening	7
1.8	Invasive Cervical Cancer	8
1.9	Investigation	8
1.10	Treatment Of Invasive Carcinoma Of The Cervix	9

SECTION 1 cervical cancer and screening

1.1 Epidemiology

Cancer is responsible for approximately 20% of deaths in women in Ireland each year and for approximately 40% of premature deaths. Female-specific cancers account for a considerable proportion of cancer deaths in women (Figure 1)¹. Deaths from cervical cancer account for approximately 2% of female cancer deaths. The crude mortality rate is 4.6/100,000.

CAUSES OF DEATH IN WOMEN	NUMBER OF DEATHS	PROPORTION
All causes	15,203	-
Malignant neoplasm's	3,430	22.5% of total deaths
Breast	638	18.6% of cancer deaths
Trachea, bronchus & lung	525	15.3% of cancer deaths
Colon	309	9% of cancer deaths
Cervix uteri	75	2.2% of cancer deaths

Figure 1: Deaths from malignant neoplasms in Irish women, 1999¹

There were 152 cases of invasive carcinoma and 906 carcinoma in-situ in 1999². Given that there were 75 deaths from cancer of the cervix uteri, this represents a mortality/incidence ratio of 49%. The incidence of invasive cervical cancer peaks in the 40-44 year age group (Figure 2).

Figure 2: Age specific incidence of cervical cancer in Ireland, 1996

1.2 Natural History

Despite the fact that it has been widely accepted for more than half a century that cervical cancer is preceded by pre-malignant cellular changes that can be easily detected by a smear test, the natural history of the condition is not well understood.

Most cervical cancers arise in the transformation zone between the squamous and columnar epithelium, close to the os. Approximately 85% of cervical cancers are squamous cell carcinomas and the remaining 15% are adenocarcinoma (glandular) or mixed types. The apparent rise in the incidence of glandular or mixed types in recent times may be due to a true rise in its incidence, a greater awareness of the cell type within cervical cancer or because cytological screening is better able to detect pre-cancerous squamous lesions and thus the relative incidences has changed.

•

cervical cancer and screening

Cervical intraepithelial neoplasia (CIN) is the descriptive term used for squamous cell changes but the cellular changes occurring in glandular or mixed types are not described by the CIN nomenclature and will not necessarily be detected by cervical smear testing. About 40% of adenocarcinomas may be picked up by chance but there is no suitable screening procedure for this type of cervical cancer.

The precise causation of the pre-malignant cellular changes is as yet unknown. A number of theories have been widely promoted and subsequently discredited over the years. The underlying assumption is that it is associated with agents potentially transmitted by sexual intercourse³. Most experts currently believe that human papillomavirus (HPV) is necessary for the development of cervical cancer⁴. However, other factors may be necessary for cancer to occur⁵. HPV types 16 and 18⁶ are considered high risk uncogenic types.

Progression rates for CIN changes have been estimated^{7.8}. While almost 60% of low-grade lesion will regress, it is likely that the majority of CIN 3 / CIS lesions, if left untreated, will progress (Figure 3).

	CIN 1	CIN 2	CIN 3
Regress	57%	43%	32%
Persist	32%	35%	56%
Progress	11 %	22%	-
Carcinoma in situ (invasive)	1%	5%	>12%

Figure 3: Natural history of CIN

The development of a low-grade lesion does not mean invariable progression to an invasive cancer. For those lesions which do progress it is estimated from trial data that the average time from development of low grade dysplasia to carcinoma in situ is twelve years with invasive disease taking a further 5 or more years⁸.

1.3 Risk Factors

Regular cervical smears protect against the risk of developing cervical cancer. It is not the smear but its investigation when abnormal which protects the few women at risk of developing cervical cancer.

While a number of risk factors have been directly or indirectly associated with cervical cancer, the strength of each individual association is relatively weak, apart from the presence of oncogenic HPV (Figure 4)⁹.

ECTION 1 ervical cancer and creening

RISK FACTOR	LOW RISK	HIGH RISK	RELATIVE RISK
Sexual partners	Few	Many	4+
Age at first intercourse	Old	Young	4+
Social class	Non-manual	Manual	<2
Smoking	No	Yes	2-4
Sexually transmitted infection	Never	Ever	<2
Oral contraceptive use	<5 years	5 years +	<2
Cervical smear	Ever	Never	4+
Age	Young	Old	4+
Geographical location	Developed world	Developing world	4+

Figure 4: Risk factors in developing cancer of the cervix

It is important that we do not confuse epidemiological risk factors with value judgements on a woman's behaviour (or that of her partner) as this is likely to be inaccurate in the individual case and will, undoubtedly, deter women from attending for screening.

1.4 The Role Of Human Papilloma Virus (HPV)¹⁰

Up to 98% of cervical cancers are associated with infection with one of the oncogenic human papilloma viruses (HPV). These high-risk viruses include types 16, 18, 31, and 45 and there is significant geographic variation in the prevalence of different types. While they are linked to the subsequent development of cervical cancer, an altered immune response locally is probably necessary. Adenocarcinoma is associated with HPV type 18, and squamous cell carcinoma is associated with the more common type 16.

HPV typing is not routinely carried out as part of international national screening programmes at present.

- Many types of HPV can cause visible warts.
- Women with oncogenic HPV will not necessarily have visible warts.
- Eradication of visible warts does not alter the risk.
- More frequent screening cannot be justified for women with a history of genital warts.

1.5 Prevention Of Cervical Cancer - The Case For Screening

Screening has been defined as the examination of asymptomatic people, in order to classify them as likely or not likely to have the disease that is the object of the screening process¹¹. Although the smear test is a good tool for screening for pre-cancerous changes of the cervix, no technique or protocol is perfect. Consequently, some women will develop invasive cervical cancer despite adherence to accepted screening protocols.

•

cervical cancer and screening

While the precise cause of cervical cancer remains unknown, primary prevention is not feasible. Cervical cancer screening, by smear testing, aims to identify cervical intraepithelial neoplasia, the pre-invasive stage of cervical cancer. There is evidence that early treatment improves survival rates (Figure 5)^{12,13}. No randomised control trials have been undertaken in cervical screening. However, observational studies and computer simulation models have reported the effectiveness of cervical screening.

SCREENING SCHEDULE	CUMULATIVE RATE 20-64 PER 100,000	REDUCTION IN RATE(%)	NO. OF TESTS	NO. OF CASES PREVENTED PER 100,000 TESTS
None	3311.5			
Every 10 years, 25-64	1298	61	4	503
Every 10 years, 35-64	1476	55	3	612
Every 10 years, 45-64	1895	43	2	708
Every 5 years, 20-64	544	84	9	308
Every 5 years, 30-64	630	81	7	383
Every 3 years, 20-64	303	91	15	201
Every year, 20-64	216	93	45	69

From IARC Working Group (1986) assuming incidence rates from Cali, Colombia. The first screening test is assumed to be 70% sensitive. D. M. Parkin, Cancer Screening, UICC 1991

Figure 5: Effect of different screening policies on incidence of cervical cancer

Screening sceptics would argue that trends in mortality have been downward in the developed world, irrespective of the existence or effectiveness of formal screening programmes^{14,15,16}. However, in the UK, the death rate from cervical carcinoma prior to 1987 was falling at a rate of just 1.5 % per year and since the late eighties when the call and recall system was introduced has been falling by 7% per year¹⁷. There is also concern about the potential hazards of over treatment of early disease, which might spontaneously have reverted to normal without intervention.

European consensus guidelines on cancer screening recommend that cervical smears should be used for cervical screening among a core age group of women aged 30-60, and the screening interval should be 3-5 years¹⁷. If resources are available, screening could be offered to a wider age group, but is not recommended for women under 20¹⁸.

It is important to realise that it is not possible to directly monitor the sensitivity and specificity of a screening test during a normal screening programme. It is also important not to confuse the performance of the screening test with the performance of the screening programme because the programme consists of a complex number of steps.

1.6 Rationale For Screening Intervals

ical cancer and

SECTION 1

The selection of the screening interval for a cervical screening programme must balance clinical considerations and cost effectiveness. Cervical screening programmes around the world have chosen various screening intervals¹⁹. The impact of screening interval on reduction in cumulative incidence risk and the number of smears a woman is required to have is detailed in Figure 6.

The ICSP offers 5 yearly screening with a repeat of the first ever smear after 1 year. This is in line with the EU recommendation that cervical cancer screening should be offered at least every fifth year²⁰. Screening every fifth year with high quality and high compliance is preferable to screening every third year, where resources are limited⁴. Screening more frequently than every 3 years is not cost effective²¹.

INTERVAL BETWEEN SMEARS	REDUCTION IN CUMULATIVE	NUMBER OF SMEARS IN A
(YEARS)	INCIDENCE RISK (%)	LIFETIME (25-60 YRS)
1	93.3	35
2	92.5	17
3	91.2	11
5	83.6	8
10	64.1	3
Single smear at age 40	20	1

Figure 6: The impact of smear interval on reduction in cumulative incidence risk and the number of smears in a lifetime ^{19,22}.

Estimates suggest that 6% of smears will show some abnormality and less than 2% will require referral to colposcopy.

1.7 Understanding Terms Commonly Used In Screening

False positive	This results where the screening test reports a positive (abnormal) finding although the person being screened does not have the condition.
False negative	This results where the screening test reports a negative (normal) finding although the person being screened has the condition.
Validity	This refers to the accuracy of the screening test in distinguishing those who do have the disease being searched for and those who do not, in the asymptomatic population.
Sensitivity	This is the probability of the test being correct for subjects who truly have the disease in question. A test with 100% sensitivity will detect every subject with the disease state among those tested. The sensitivity of the cervical smear test is defined as the proportion of women with cervical intraepithelial neoplasia (CIN) whose smear tests are interpreted as positive.
Specificity	This is the probability of the screening test being negative in subjects who do not have the disease being sought. A test with 100% specificity will correctly identify as normal all those subjects who do not have the disease being assessed. The specificity of the cervical smear test is defined as the proportion of women without CIN whose smear tests are interpreted as negative.

00

cervical cancer and screening

Positive The positive predictive value of a screening test refers to the ratio of lesions, which are truly positive to those, which are test positive. It is intimately affected by the prevalence of the condition under study.

Refer to Appendix 4 for more terminology.

1.8 Invasive Cervical Cancer

Symptoms and signs:

It is unusual for women to have any symptoms associated with the pre-cancerous state or early cancer. Symptoms of post-coital bleeding, inter-menstrual bleeding and an unusual discharge are associated with more advanced cancer but can be produced by other causes. Invasive cancer can present as an ulcerated cervix.

- A smear test may be negative in the presence of invasive carcinoma
- Where suspicion of an invasive carcinoma exists, urgent referral should not await smear test results
- A woman with symptoms or signs suggestive of cervical cancer should be referred for diagnostic colposcopy, regardless of the actual smear result

Well-advanced invasive carcinoma may only show necrotic material on sampling and, similarly, a cervix having CIN3 may appear normal macroscopically, but the following features can be present

- Contact bleeding
- Raised irregular contour (Figure 7)
- Friable easily detached epithelium
- Palpable mass at the vaginal vault

Figure 7: Grossly abnormal nodular appearance

1.9 Investigation

ervical cancer and

SECTION 1

Abnormal clinical findings need investigation. Colposcopy, where the cervix is viewed under a microscope, plays a central role in determining management of pre-invasive cervical carcinoma. The diagnosis of preinvasive disease is usually made when patients undergo colposcopically directed biopsies following an abnormal smear test.

Both ablative and excisional procedures are employed when preinvasive disease is found. The laser loop excision of the transformation zone (LLETZ) allows excision of the required area with least morbidity. Cone biopsy is associated with long-term morbidity (cervical stenosis and incompetence) but is indicated for women with CIN3 on smear testing and no colposcopically detected visible abnormality or for women where the full extent of the lesion cannot be visualised colposcopically.

1.10 Treatment Of Invasive Carcinoma Of The Cervix

The management of women with invasive disease depends on the FIGO (Federation Internationale de Gynecologie Obstétrique) stage and status of the patient (Figure 8). This is a prognostic classification where stages 1a2, 1a2, 1b1 and 11a are considered "early" disease and 11a-1Va are considered locally advanced disease.

Stage 1	The cancer is confined to the cervix
Stage 1a	Microinvasive disease
Stage 1a1	Stromal (connective tissue) invasion less than 3 mm
Stage 1a2	Stromal invasion 3-5 mm, not in excess of 7 mm in horizontal spread
Stage 1b	Lesions greater than 7 mm in horizontal spread
Stage 2	Involvement extends beyond the cervix, including the vagina except for the lowest third or infiltration of the parametrium (connective tissue near the uterus) but not out to the pelvic sidewall
Stage 2a	Involvement of the upper two-thirds of the vagina, without lateral extension into the parametrium
Stage 2b	Lateral extension into the parametrial tissue but not out to the pelvic sidewall
Stage 3	Involvement of the lowest third of the vagina or the pelvic sidewall or causes hydronephrosis (nonfunctioning kidney)
Stage 3a	Involvement of the lowest third of the vagina
Stage 3b	Involvement of the pelvic sidewall or hydronephrosis
Stage 4	Cancer extends beyond the reproductive tract
Stage 4a	Involvement of the bladder or rectal mucosa
Stage 4b	Distant metastasis (cancer that spreads to other parts of the body away from the original, primary site) or disease outside the true pelvis

Figure 8: FIGO classification for cervical carcinoma

cervical cancer and screening

Stages 1a1 is treated by cone biopsy or hysterectomy, depending on whether fertility is desired. Other stages of early disease are treated with radical hysterectomy (removal of the uterus, cervix, cuff of the vagina, parametrial tissues and pelvic lymph nodes). Less fit women with early disease and women with locally advanced disease are best treated with radical radiotherapy (external beam radiation or brachytherapy where radioactive isotopes are placed within or adjacent to the tumour). These patients have a high risk of nodal disease and would need radiotherapy. Dual treatment with both radiation and surgery is associated with increased morbidity¹².

The 5-year survival of most recent advances in treatment is shown in Figure 913.

Stage 1a	95%
Stage 1b1	80%
Stage 11a	66%
Stage 11b	63%
Stage 111	35-50%
Stage 1Va	17%
Stage 1Vb	9%

5-YEAR SURVIVAL ACCORDING TO STAGE

Figure 9: Cervical cancer stage and survival rates